Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Acta Physiologica Sinica ; (6): 689-697, 2019.
Article in English | WPRIM | ID: wpr-777142

ABSTRACT

The aim of the present study was to investigate the role of ferroptosis in acute lung injury (ALI) mouse model induced by oleic acid (OA). ALI was induced in the mice via the lateral tail vein injection of pure OA. The histopathological score of lung, lung wet-dry weight ratio and the protein content of bronchoalveolar lavage fluid (BALF) were used as the evaluation indexes of ALI. Iron concentration, glutathione (GSH) and malondialdehyde (MDA) contents in the lung tissues were measured using corresponding assay kits. The ultrastructure of pulmonary cells was observed by transmission electron microscope (TEM), and the expression level of prostaglandin-endoperoxide synthase 2 (PTGS2) mRNA was detected by quantitative polymerase chain reaction (q-PCR). Protein expression levels of glutathione peroxidase 4 (GPX4), ferritin and transferrin receptor 1 (TfR1) in lung tissues were determined by Western blot. The results showed that histopathological scores of lung tissues, lung wet-dry weight ratio and protein in BALF in the OA group were higher than those of the control group. In the OA group, the mitochondria of pulmonary cells were shrunken, and the mitochondrial membrane was ruptured. The expression level of PTGS2 mRNA in the OA group was seven folds over that in the control group. Iron overload, GSH depletion and accumulation of MDA were observed in the OA group. Compared with the control group, the protein expression levels of GPX4 and ferritin in lung tissue were down-regulated in the OA group. These results suggest that ferroptosis plays a potential role in the pathogenesis of ALI in our mouse model, which may provide new insights for development of new drugs for ALI.


Subject(s)
Animals , Mice , Acute Lung Injury , Pathology , Apoptosis , Bronchoalveolar Lavage Fluid , Chemistry , Cyclooxygenase 2 , Metabolism , Ferritins , Metabolism , Glutathione , Glutathione Peroxidase , Metabolism , Iron , Iron Overload , Lung , Cell Biology , Pathology , Malondialdehyde , Microscopy, Electron, Transmission , Mitochondrial Membranes , Oleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL